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Cohesion and aggregation of flexible hard rods with an attractive interaction
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FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 9 December 1996!

Long flexible rods are considered; these are hard cylindrical particles with a contour length less than their
persistence length. We show that an attractive interaction between the rods, with a range of the order of the
diameter of the hard core, causes dilute phases of the rods to collapse to a dense phase with a volume fraction
of order 0.1. The temperature of this collapse is insensitive to the persistence length; it is significantly lower
than that for perfectly rigid rods even for very large persistence lengths.@S1063-651X~97!16305-X#

PACS number~s!: 64.75.1g, 82.30.Nr
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I. INTRODUCTION

Rodlike polymers@1#, such as DNA, have been observ
to form aggregates of many molecules@2#. This aggregation
or coagulation is associated with a sudden increase in c
pressibility as the number of free particles drops@2,3#. Here
we study the cohesion of a pair of polymer molecules wh
have a small amount of flexibility, too much to be neglect
but much less than that required to form a coil. The result
this study are then applied to estimate when the polym
molecules aggregate. We suggest that the formation of d
aggregates is quite general for rodlike molecules. The p
mers are sufficiently rigid to be still rodlike@4#, and we refer
to them as flexible rods. They interact via a hard-core an
short-ranged attractive interaction. By short ranged we m
an interaction which has a range of the order of the diam
of the hard core of the rod@5#. Such short-ranged interaction
are inherently highly anisotropic.

Although the effect of attractive interactions on the b
havior of spherical particles has been extensively studied@6#,
the effect on nonspherical particles is much less well und
stood. Even in the case of perfectly rigid rods there ha
been only a few studies@5,7#. For flexible rods, as far as th
author is aware, the only studies which address the inter
between flexibility @1# and attractive interactions@5,8# are
those of Helfrich and Harbich on tubular vesicles@9#, and of
Odijk @10#. This is surprising in view of the fact that th
polymers which are of interest are rarely much shorter t
their persistence length.

Any short-ranged interaction, such as van der Waals
teractions between polymer molecules, will scale with
length of the particles and will be very anisotropic. Th
degree of anisotropy makes treating the attractive inte
tions as either isotropic or a slowly varying function
angle, such as a low-order Legendre polynomial, wholly
appropriate. The results of Khokhlov and Semenov@7#, Sam-
borski and Evans@11#, and those for Kihara potential
@12,13#, are for models very different from the rods we co
sider here.

We first study rods which are perfectly rigid, and th
rods which have a persistence length which is of the sa
order as their length. Dilute solutions of both these types
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rods phase separate into an extremely dilute solution an
solution with a volume fraction of order unity, but conside
ably stronger attractive interactions are required to prod
this phase separation if the rods are flexible. Our main c
clusions are that flexibility stabilizes the rods against agg
gation, and its contribution to this stability is of the sam
order as that due to the orientational degree of freedom,
any reasonable values of the length and persistence leng
a rodlike polymer. However, even flexible rods are mu
more prone to aggregation than spherical particles@14#, i.e.,
they aggregate at much lower values of the Hamaker c
stant than are required for spheres. The dense phase fo
on aggregation is shown to be at volume fractions of or
0.1: at these densities long rodlike molecules possess at
nematic ordering~and may be columnar or even solid!.

II. ROD-ROD INTERACTIONS AND BOUND PAIRS

Van der Schoot and Odijk@5# studied perfectly rigid rods
with an attractive interactionE(R,L). This attraction is of
the form

E~R,g!;H 2
A

using~V,V8!u
f S RD D , g>D/L

2
A

D/L
f S RD D , g<D/L,

~1!

which is the qualitative form for rods interacting via van d
Waals @8# forces. Any other short-ranged interaction w
also have anE(R,g) of a similar form@10#. The functionf is
a decaying function ofR/D, such that f (0)51 and
f (x)→0 asx→0.A is the Hamaker constant and is positiv
The rods have diameterD and lengthL, andR is the distance
of closest approach between the center lines of the two r
@5#. The orientations of the two rods areV andVg8 andg is
the angle between the center lines of the rods. Equation~1!
for the potential is valid for rods whose centers of mass
within a small fraction ofL apart. If the rods are parallel th
energy is, as we would expect, proportional toL/D. This
scaling withL/D produces a very deep well for long rod
which are parallel or near parallel to each other. Equation~1!
is only the attractive part of the interaction; ifR,D, then the
hard cores of the rods overlap and the energy is`.

Although potential~1! is a continuous function ofR, we
will characterize it by a lengthRc1D, which will be be-
5820 © 1997 The American Physical Society
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55 5821COHESION AND AGGREGATION OF FLEXIBLE HARD . . .
tween;1.5D and;4D. Rc is thus the difference betwee
the range of the attractive potential and the range of the h
repulsive interaction. For a givenf (x) there is no unique
way to estimateRc , but a simple way is to viewRc as a
cutoff. ThenRc1D is the distance at which the potenti
energy is, say, 0.2 of its value atD. For example, if
f (R/D)5(D/R)4 @5#, thenRc.0.50.
We consider the free energy change when one rod ‘‘c

tures’’ another, i.e., when a pair of rods are restricted so
they are near the minimum of the potential of Eq.~1!. This is
done because the interaction energy of a pair of rods is
zero unless they are parallel or nearly parallel; the interac
between crossed rods is a factor ofD/L less than that be
tween parallel rods; see Eq.~1!. See Fig. 1 for schemati
illustrations of bound pairs of rigid and flexible rods. Whe
this free energy change is positive, we expect very few p
to be found closely bound in the potential minimum, and
expect that the fluid is stable. However, when it is negat
we expect not only bound pairs but triplets and larger cl
ters to form. Note that the formation of a bound pair
rodlike polymers is very similar to the adsorption of a o
rodlike polymer molecule onto a line@15#.

III. PERFECTLY RIGID RODS

As the length to diameter ratio of a perfectly rigid ro
tends to infinity, any attractive interaction which scales
the length of the rod will cause a fluid of rods to collapse@5#;
i.e., a dilute solution will spontaneously phase separate
an extremely dilute solution, and a solution with a volum
fraction of order 0.1. Very long rods, due simply to the
repulsive cores, must possess at least nematic orderin
these volume fractions. Thus we see immediately that th
rods do not form a liquid. We know that short rods withL of
the same order asD do form a liquid, so for some interme
diate value ofL/D the liquid phase will disappear above
transition to a phase with nematic ordering.

We proceed to estimate the free energy differenceDF
between a pair of rods bound in the potential minimum, a
a pair of noninteracting rods. For two rods to be in the p
tential minimum their center lines should remain with
Rc1D throughout their whole lengths. Then their ener
DU will scale asL/D,

DU;2A
L

D
. ~2!

TheRc dependence comes from the volume inside of wh
the rods’ center lines are withinRc . If the center lines of two

FIG. 1. Bound pairs of rigid~top! and flexible~bottom! rods.
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perfectly rigid rods are to remain withinRc throughout their
whole lengths, then the angleg between them must be
&Rc /L ~see Fig. 1!, and their centers of mass must be le
thanRc apart. The first of these two restrictions changes
orientational entropy of the rods by; ln(Rc /L)

2, and the sec-
ond changes their translational entropy by; ln(cRc

3) @16#.
The concentrationc5N/V for N rods in a volumeV. Thus
the difference in entropyDS between a pair of bound rigid
rods and a free pair is

DS;2 ln~Rc /L !1 ln~cRc
3!. ~3!

Combining with Eq.~2!,

DF5DU2TDS;2A
L

D
2T@2 ln~Rc /L !1 ln~cRc

3!#.

~4!

Our temperature units are such that Boltzmann’s constan
unity. As the lengthL of the rods increases, the Hamak
constantA needed to produce a negative free energy cha
for binding tends to 0 asT/(L/D). So, at the temperature a
which binding starts to occur, the energy of configurations
the rods in which they are not nearly parallel is near zero
is of the order ofA, and our approximation of considerin
only an equilibrium between tightly bound states and non
teracting states is valid. This behavior was observed by
der Schoot and Odijk@5# in their study of the second viria
coefficient of this model. The entropy cost~3! of forming a
bound pair is much greater than unity, and so the free ene
is a rapidly varying function of temperature near the po
where Eq.~4!50. Therefore, as the temperature is lowere
the changeover from almost all molecules being free to
most all of them being bound in pairs, occurs over a sm
range of temperature.

If a pair of rods overlaps for some length,D!L8,L,
DF is simply Eq.~4!, but withL8 substituted forL. It is then
easy to see that at the temperature at whichDF of Eq. ~4!
becomes negative theDF ’s for all L8,L are positive. Our
crude analysis of the free energy of a pair of rods thus s
gests that the minimum of the free energy switches fr
being with the pair hardly interacting at all to being with th
pair lying alongside each other for essentially their who
lengths, at the temperature for which Eq.~4!50.

IV. FLEXIBLE RODS

We now examine flexible rods, and estimate the ad
tional entropy loss when they form bound pairs. The physi
picture is the same as for rigid rods: a pair of rods gain
large amount of energy by lying parallel, but in doing
suffers a large reduction in entropy. As both parts of the f
energy are large, we again expect a quite sudden colla
from a dilute phase to a much denser ordered phase. A fl
ible rodlike colloidal particle is modeled by a homogeneo
cylindrical elastic filament@1,17#. The filament follows a
continuous curve in space; see Fig. 1. This curve is descr
by a unit tangent vectort(s) to the curve at each point on th
curve s. At nonzero temperature the filament fluctuate
causing correlations between tangent vectors at diffe
points on the curve to decay as the separation of the po
increases@17#,
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^t~s!•t~s1ds!&5^cosu~ds!&5exp~2ds/P!, ~5!

for two points on the curve separated by a distanceds along
the filament. The angular brackets indicate an ensemble
erage.u is the angle between the two tangent vectors a
P is the persistence length@1,18# of a filament. The persis
tence length~which is a function of temperature! measures
the flexibility of the rod. The angle between the tangent v
tors of two points separated by a persistence length is
average, around 1 rad. A perfectly rigid rod has an infin
persistence length.

The attractive interaction of Eq.~1! is only appropriate for
a perfectly rigid rod;g is not well defined if the rods are no
completely straight. However, if a flexible rod is broken
into segments much shorter thanP, then we can define an
interaction between flexible rods which is a sum of the int
actions between these segments.g is defined as being the
angle between the two polymer curves at the centers of m
of the segments, allowing Eq.~1! to be used for the segmen
segment interaction. There is an ambiguity as the length
the segments has to be chosen, but the effect of this amb
ity in making our potential model slightly ill defined is fa
too small to affect our qualitative discussion. We continue
consider the energy as beingA times the length the pair o
polymers are withinRc1D of each other.

As with perfectly rigid rods, we consider the configur
tions of a pair of rods in which they are interacting via t
attractive interaction. In order for the rods to interact via t
attractive potential throughout their whole lengthsL, their
center lines must remain withinRc for their whole length.
For a given configuration of one of the pair of rods, t
second rod is restricted to a cylindrical volume of diame
Rc surrounding the first rod. The confinement of flexible ro
into tubes is well understood@9,19#. The entropy costDS is
extensive in the length of the rodL, and scales as
L/Rc

2/3P1/3 @19#. The lengthRc
2/3P1/3 is the deflection length

@18,19# for a rod constrained to lie in the potential well o
width Rc . If ds!P, we may expand both the cos and e
functions of Eq.~5!, giving

A^u2~ds!&5S 2ds

P D 1/2, ds!P. ~6!

The angleA^u2(ds)& is the rate at which the curve followe
by the polymer is moving away from an axis along the vec
t(s), as ds increases. Therefore, we simply integra
A^u2(ds)& from 0 to r to give the distanced between the
curve and this axis at a distance ofr along the polymer,

d5S 233 D 1/2 r 3/2P1/2. ~7!

When d5Rc , r;Rc
2/3P1/3 is the length of the longest seg

ment of the polymer which can fit into the potential we
without being perturbed: the deflection length. Over cont
lengths less than the deflection length, the polymer confi
rations are little affected by the confinement, but on lon
length scales the number of configurations of the polym
chain are dramatically reduced by the need to remain wi
Rc of the other polymer.
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The entropy reduction due to the suppression of undu
tions of the polymer is assumed to be of the order of un
per deflection length. This assumption is confirmed by
results of more systematic calculations; see Ref.@18#. Add-
ing the entropy change for a rigid rod, Eq.~3! @18,19#,

DS;2 ln~Rc /L !1 ln~cRc
3!2

L

Rc
2/3P1/3. ~8!

The last term in Eq.~8! is due to the stretching of an elast
filament, so that all undulations which deviate more th
Rc from a fixed axis are smoothed out. This additional te
scales asL, at constantP, and so will dominate for suffi-
ciently largeL. ThusDS for flexible rods increases linearl
with L, for largeL, while for perfectly rigid rods it increase
only logarithmically. The energy gained by these rodsDU is
the same as for perfectly rigid rods, Eq.~2!. Of course, this is
not strictly true, but the energy will still scale linearly wit
L; the only change is in the numerical prefactor, which w
are ignoring. Thus the free energy changeDF is

DF;2A
L

D
1TS L

Rc
2/3P1/322 ln~Rc /L !2 ln~cRc

3! D . ~9!

ReplacingL by L8 in Eq. ~9! gives the free energy chang
for two rods which follow each other for a fractionL8/L of
their lengths. As for rigid rods, at the temperature for whi
Eq. ~9!50, the free energy of a pair of rods bound for part
their lengths is positive. So, again, partial binding of the ro
is not favored.

V. DISCUSSION

In order to study the length and flexibility dependence
aggregation, we equate the free energy difference betw
bound and free pairs of rods to zero. This gives us an eq
tion which we solve for (A/T)0: the reduced Hamaker con
stant at which the free energy of formation of a bound pai
zero. (A/T)0 is then our estimate of the Hamaker consta
above which the polymer aggregates. For rigid rods we h
@5#

SATD
0

;
22 ln~Rc /L !2 ln~cRc

3!

L/D
, ~10!

and for flexible rods

SATD
0

;
22 ln~Rc /L !2 ln~cRc

3!1L/~Rc
2/3P1/3!

L/D
. ~11!

Note the very slowP21/3 decrease of (A/T)0 with in-
creasingP. No realistic value ofP/D is sufficiently large to
render the flexibility term in Eq.~11! negligible. For a rod of
lengthL/D550, say, even ifP/D@50, a free rod will bend
by much more thanRc50.5D, and so constraining a rod no
to bend by more than 0.5D costs considerable entropy. How
ever, our theory suggests that for flexible rods, w
L/P&1, the flexibility term is never dominant. (A/T)0 may
double when flexibility is accounted for, but it does not see
to increase by an order of magnitude.
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There will bec2 pair interactions,c3 triplet interactions,
etc. Not only bound pairs of rods but also bound triplets a
larger aggregates@20# are possible in a fluid. In particular
the energy of a triplet is23AL, but the entropy cost in
forming a triplet will not be much more than twice that
forming a pair. Thus we expect triplets and larger aggrega
to form and the compressibility to diverge at a lowerA/T
than given by Eqs.~10! or ~11!. If the system is allowed to
go to equilibrium, then presumably a dense bulk phase
appear: the aggregates found in Ref.@2# are almost certainly
not true equilibrium structures. However, within our qualit
tive theory (A/T)0 is an adequate estimate of the ratio of t
Hamaker constant to the temperature at which aggrega
sets in; an estimate of the third virial coefficient@5# only
changes (A/T)0 by a factor of order unity. Given that in th
aggregates the rods are;RC1D apart, if these aggregate
grow to macroscopic size, as presumably they will, then
fluid will collapse until the density is high enough that th
packing fraction is of order (Rc /D11)22. The collapse will
be halted by entropic and excluded volume repulsions
these densities. The entropic repulsions occur because a
volume fraction increases the space available for the rod
undulate in decreases. The volume per rod in a aggrega
;(Rc1D)2L, which gives the volume fraction inside a a
gregate as (Rc /D11)22.O(0.1). This dense phase must b
at least a highly ordered nematic but it may be a colum
phase@21,22#. Thus, it is clear that long rods with a attra
tion with a range of orderD do not form a liquid phase, i.e.
there is no coexistence between two isotropic phases.

The large jump in volume fraction fromD/L or less to 0.1
is a direct consequence of the fact that the polymer m
ecules have the lowest free energy in one of two states: f
in which they behave similarly to a dilute gas of hard rod
and bound, in which they form a much denser nematic
columnar phase. The binding of a pair of polymer molecu
is very similar to adsorption@8,15#. Our free energies~4! and
~9! are appropriate for adsorption of rigid and flexible rod
respectively, onto a line. The jump between zero and co
plete adsorption we have found may be contrasted with
continuous adsorption found for flexible polymers, tho
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with L@P @15#. The difference between the rodlike and th
flexible polymers is that rodlike polymers cannot form loop
i.e., configurations in which the path followed by the pol
mer enters and leaves the potential well of the other polym
more than once are highly unfavorable. This is obviou
true for perfectly rigid rods which cannot bend at all, but al
for L&P, once two polymer molecules have parted the e
tropy cost in bending them back to join again is much grea
than unity.

Finally, we consider the relevance of our findings for e
periment. First, for long rigid or flexible rods we see a ch
acteristic, dramatic collapse of a dilute phase to a mu
denser phase. This is not found for spherical molecules.
predict that the collapse to either a dense bulk phase
large aggregate of many molecules side by side, is gener
rods and should be observable in any dilute solution of v
long molecules, in which the attractive interactions are
creased above a threshold. In the case of the DNA studie
Wissenburget al. @2#, if we assume a persistence leng
P.50 nm @23# for the DNA, thenL/D.P/D.25. With
these values, the contributions of the flexibility and orien
tional terms to (A/T)0 are of the same order; we therefo
cannot treat the DNA as being perfectly rigid. Without th
numerical coefficients of the terms in Eq.~11!, and at least a
semiquantitative knowledge of the interactions, the the
has little predictive ability. However, if experiments such
those of Ref.@2# could be repeated for severalL/D ratios, the
presence of contributions toDS due to flexibility could be
determined, and the scaling of the last term of Eq.~8! con-
firmed ~or refuted!.
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