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Cohesion and aggregation of flexible hard rods with an attractive interaction
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Long flexible rods are considered; these are hard cylindrical particles with a contour length less than their
persistence length. We show that an attractive interaction between the rods, with a range of the order of the
diameter of the hard core, causes dilute phases of the rods to collapse to a dense phase with a volume fraction
of order 0.1. The temperature of this collapse is insensitive to the persistence length; it is significantly lower
than that for perfectly rigid rods even for very large persistence lenf#1€63-651X97)16305-X]

PACS numbes): 64.75+g, 82.30.Nr

[. INTRODUCTION rods phase separate into an extremely dilute solution and a
solution with a volume fraction of order unity, but consider-
Rodlike polymerq1], such as DNA, have been observed ably stronger attractive interactions are required to produce
to form aggregates of many moleculgy. This aggregation this phase separation if the rods are flexible. Our main con-
or coagulation is associated with a sudden increase in cong¢lusions are that flexibility stabilizes the rods against aggre-
pressibility as the number of free particles dr¢ps3]. Here gation, and its contribution to this stability is of the same
we study the cohesion of a pair of polymer molecules whichrder as that due to the orientational degree of freedom, for
have a small amount of flexibility, too much to be neglected@ny reasonable values of the length and persistence length of
but much less than that required to form a coil. The results of rodlike polymer. However, even flexible rods are much
this study are then applied to estimate when the polymefore prone to aggregation than spherical partifles, i.e.,
molecules aggregate. We suggest that the formation of dendeey aggregate at much lower values of the Hamaker con-
aggregates is quite general for rodlike molecules. The polystant than are required for spheres. The dense phase formed
mers are sufficiently rigid to be still rodliel], and we refer 0N aggregation is shown to be at volume fractions of order
to them as flexible rods. They interact via a hard-core and &.1: at these densities long rodlike molecules possess at least
short-ranged attractive interaction. By short ranged we meaA€matic orderingand may be columnar or even sglid
an interaction which has a range of the order of the diameter
of the hard core of the rob]. Such short-ranged interactions [l. ROD-ROD INTERACTIONS AND BOUND PAIRS

are inherently highly anisotropic. Van der Schoot and Odiji5] studied perfectly rigid rods

Although th? effect .Of attractive mteractlc_ms on the be'with an attractive interactio(R,L). This attraction is of
havior of spherical particles has been extensively stujdigd the form

the effect on nonspherical particles is much less well under-
stood. Even in the case of perfectly rigid rods there have A R
been only a few studids,7]. For flexible rods, as far as the - ff(_), v=DJ/L
; ; . ; |siny(Q,Q")| \D
author is aware, the only studies which address the interplay E(R,y)~
between flexibility[1] and attractive interactionfb,8] are A
those of Helfrich and Harbich on tubular vesic[@$, and of B D_/|_f(5>’ y<DIL,
Odijk [10]. This is surprising in view of the fact that the
polymers which are of interest are rarely much shorter thaivhich is the qualitative form for rods interacting via van der
their persistence length. Waals [8] forces. Any other short-ranged interaction will
Any short-ranged interaction, such as van der Waals inalso have afE(R, y) of a similar form[10]. The functionf is
teractions between polymer molecules, will scale with thea decaying function ofR/D, such that f(0)=1 and
length of the particles and will be very anisotropic. This f(x)—0 asx—0.A is the Hamaker constant and is positive.
degree of anisotropy makes treating the attractive interacthe rods have diamet& and length_, andR is the distance
tions as either isotropic or a slowly varying function of of closest approach between the center lines of the two rods
angle, such as a low-order Legendre polynomial, wholly in{5]. The orientations of the two rods afkand{; andy is
appropriate. The results of Khokhlov and SemefilySam-  the angle between the center lines of the rods. Equéfipn
borski and Evang11l], and those for Kihara potentials for the potential is valid for rods whose centers of mass are
[12,13, are for models very different from the rods we con-within a small fraction ol apart. If the rods are parallel the
sider here. energy is, as we would expect, proportional ttD. This
We first study rods which are perfectly rigid, and thenscaling withL/D produces a very deep well for long rods
rods which have a persistence length which is of the samwhich are parallel or near parallel to each other. Equ&tlon
order as their length. Dilute solutions of both these types ofs only the attractive part of the interactionR D, then the
hard cores of the rods overlap and the energy.is
Although potential(1) is a continuous function oR, we
*Electronic mail: sear@amolf.nl will characterize it by a lengtiR.+ D, which will be be-
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>< T ~R, perfectly rigid rods are to remain withiR; throughout their

whole lengths, then the angle between them must be
=<R./L (see Fig. 1, and their centers of mass must be less
thanR, apart. The first of these two restrictions changes the
—meST——,_ | -R orientational entropy of the rods byIn(R./L)?, and the sec-
¢ ond changes their translational entropy byn(clﬁ) [16].
The concentratio=N/V for N rods in a volumeV. Thus

— — the difference in entropA S between a pair of bound rigid
L rods and a free pair is
FIG. 1. Bound pairs of rigidtop) and flexible(bottor) rods. AS~2In(R./L)+ In(cRg)_ 3)

tween~1.5D and ~4D. R, is thus the difference between Combining with Eq.(2),

the range of the attractive potential and the range of the hard

repulsive interaction. For a givef(x) there is no unique AF=AU—TAS~—A£—T[2 In(R /L)+In(cR§)].
way to estimateR;, but a simple way is to viewR. as a D ¢

cutoff. ThenR.+D is the distance at which the potential (4)

?Fs;g); _'SE’D/SI%I"‘ [g']z tr?;nllgs :/glgg . For example, if Our temperature units are such that Boltzmann’s constant is
We c_onsider the ’free ence? .ch.an e when one rod “ca unity. As the lengthL of the rods increases, the Hamaker
o . 9y 9 . PtonstantA needed to produce a negative free energy change
tﬁres another,hl.e., when a pfalrr] of rods arle ;eégwtid so th or binding tends to 0 a3$/(L/D). So, at the temperature at
they are near the minimum of the potential o . This is . oS e ) .

. . . . hich binding starts to occur, the energy of configurations of
done because the interaction energy of a pair of rods is neﬁﬁe rods in V\?hich they are not nearly ggrallel is r?ear zero; it
zero unless they are parallel or nearly parallel; the interactioiS of the order ofA, and our approximation of Considering’
Es;vgﬁegafz;ﬁ;serg drsqusels E (La;ctgreﬁebﬂlziéesis ;Qfggﬁs:ngﬁé only an equilibrium between tightly bound states and nonin-
illustrations of bound pairs of rigid and flexible rods. When te;?gt?hgoia;iz 'é&ﬁég izrlﬁeﬁegti\gsro\;v?r?eosbesfg\r/]eddvit;iyalvan
this free energy change is positive, we expect very few pairgoefficient of this model. The entropy cd) of forming a

to be found closely bound in the potential minimum, and We, Jund pair is much areater than unitv. and so the free ener

expect that the fluid is stable. However, when it is negative P: chg : Y, 19y
i : is a rapidly varying function of temperature near the point

we expect not only bound pairs but triplets and larger clus-

ters to form. Note that the formation of a bound pair ofWhere Eq.4)=0. Therefore, as the temperature is lowered,

rodlike polymers is very similar to the adsorption of a onetmhg Sihaalllng? ?r\]/eer;frt)oerrn aILnOOuS;da:nglifg u:)ecscfresl no%/greg ;cr)nglli
rodlike polymer molecule onto a ling5]. 9 paurs,

range of temperature.

If a pair of rods overlaps for some lengtB<L'<L,

. PERFECTLY RIGID RODS AF is simply Eq.(4), but with L’ substituted fol_. It is then

As the length to diameter ratio of a perfectly rigid rod easy to see tha_t at the ,temperatur,e at wilih Of _Eq. (4)
tends to infinity, any attractive interaction which scales ad€comes negative theF’s for all L' <L are positive. Our
the length of the rod will cause a fluid of rods to collapsf ~ crude analysis of the free energy of a pair of rods thus sug-
i.e., a dilute solution will spontaneously phase separate intg€Sts that the minimum of the free energy switches from
an extremely dilute solution, and a solution with a volumeP€ing With the pair hardly interacting at all to being with the
fraction of order 0.1. Very long rods, due simply to their pair lying alongside each other fqr essentially their whole
repulsive cores, must possess at least nematic ordering §N9ths, at the temperature for which E¢)=0.
these volume fractions. Thus we see immediately that these
rods do not form a liquid. We know that short rods wiitfof IV. FLEXIBLE RODS
the same order a3 do form a liquid, so for some interme-

diate value ofL./D the liquid phase will disappear above a yjona) entropy loss when they form bound pairs. The physical

transition to a phase with nematic ordering. ; ; L . ; ;
) : icture is the same as for rigid rods: a pair of rods gains a
We proceed to estimate the free energy differende CE g b g

b i+ of rods bound in th 1 mini arge amount of energy by lying parallel, but in doing so
etween a pair of rods bound In the potential minimum, and, e s 4 |arge reduction in entropy. As both parts of the free
a pair of noninteracting rods. For two rods to be in the po-

. L . ) . - FX"energy are large, we again expect a quite sudden collapse
tential minimum their center lines should remain within from a dilute phase to a much denser ordered phase. A flex-
R+ D_ throughout their whole lengths. Then their energy;y e rodiike colloidal particle is modeled by a homogeneous
AU will scale asL/D, cylindrical elastic filamen{1,17. The filament follows a

continuous curve in space; see Fig. 1. This curve is described

— L by a unit tangent vectd(’s) to the curve at each point on the
AU A—. (2 :
D curve s. At nonzero temperature the filament fluctuates,

causing correlations between tangent vectors at different
The R; dependence comes from the volume inside of whichpoints on the curve to decay as the separation of the points
the rods’ center lines are withiR; . If the center lines of two increase$17],

We now examine flexible rods, and estimate the addi-
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(t(s)-t(s+ 8s)y=(cosH(5s)) =exp — 8s/P), (5) The entropy reduction due to the suppression of undula-
tions of the polymer is assumed to be of the order of unity
for two points on the curve separated by a distafigalong  Per deflection length. This assumption is confirmed by the
the filament. The angular brackets indicate an ensemble ayesults of more systematic calculations; see RES]. Add-
erage.d is the angle between the two tangent vectors and"d the entropy change for a rigid rod, E@) [18,19,
P is the persistence lengfii,18] of a filament. The persis-
tence lengthiwhich is a function of temperatureneasures - 3\ _
the flexibility of the rod. The angle between the tangent vec- AS=2In(R./L)+In(CRe)
tors of two points separated by a persistence length is, on
average, around 1 rad. A perfectly rigid rod has an infiniteThe last term in Eq(8) is due to the stretching of an elastic
persistence length. filament, so that all undulations which deviate more than
The attractive interaction of Eq@l) is only appropriate for R. from a fixed axis are smoothed out. This additional term
a perfectly rigid rod;y is not well defined if the rods are not scales ad_, at constant®, and so will dominate for suffi-
completely straight. However, if a flexible rod is broken up ciently largeL. ThusAS for flexible rods increases linearly
into segments much shorter th&) then we can define an with L, for largeL, while for perfectly rigid rods it increases
interaction between flexible rods which is a sum of the inter-only logarithmically. The energy gained by these rad$ is
actions between these segmenisis defined as being the the same as for perfectly rigid rods, E8). Of course, this is
angle between the two polymer curves at the centers of mag®t strictly true, but the energy will still scale linearly with
of the segments, allowing E¢) to be used for the segment- L; the only change is in the numerical prefactor, which we
segment interaction. There is an ambiguity as the length ofre ignoring. Thus the free energy change is
the segments has to be chosen, but the effect of this ambigu-
ity in making our potential model slightly ill defined is far L
too small to affect our qualitative discussion. We continue to ~ 2F~~Ap +T| gzzpme =2 IN(Re/L) = In(cR?) |- (9)
consider the energy as beidgtimes the length the pair of ¢

polymers are withirR.+D of each other. ReplacingL by L’ in Eq. (9) gives the free energy change
As with perfectly rigid rods, we consider the configura- for two rods which follow each other for a fractidn/L of

tions of a pair of rods in which they are interacting via thetheir lengths. As for rigid rods, at the temperature for which

attractive interaction. In order for the rods to interact via thegq, (9)=0, the free energy of a pair of rods bound for part of

attractive potential throughout their whole lengthstheir  their lengths is positive. So, again, partial binding of the rods
center lines must remain withiR; for their whole length. s not favored.

For a given configuration of one of the pair of rods, the
second rod is restricted to a cylindrical volume of diameter
R. surrounding the first rod. The confinement of flexible rods
into tubes is well understod®,19]. The entropy cosAS is In order to study the length and flexibility dependence of
extensive in the length of the rod, and scales as aggregation, we equate the free energy difference between
L/R¥3p3[19]. The lengthR?®P*? is the deflection length bound and free pairs of rods to zero. This gives us an equa-
[18,19 for a rod constrained to lie in the potential well of tion which we solve for A/T),: the reduced Hamaker con-
width R.. If ds<P, we may expand both the cos and exp stant at which the free energy of formation of a bound pair is

L
e O

V. DISCUSSION

functions of Eq.(5), giving zero. (A/T)q is then our estimate of the Hamaker constant
above which the polymer aggregates. For rigid rods we have
255\ (5]
V(6?(8s)) = (?) . Os<P. (6)
(A) —2In(R./L)—In(cR?) 10
The angle\(6?(5s)) is the rate at which the curve followed T/, L/D ' (10
by the polymer is moving away from an axis along the vector
t(s), as &s increases. Therefore, we simply integrateand for flexible rods
V(6?(5s)) from O tor to give the distancel between the
curve and this axis at a distanceroflong the polymer, A\ —2In(R/L)—In(cR%)+L/(RZ*P)
T L/D - (A
23\ 1/2 312 0
d= 3) Pz () 13 -
Note the very slowP decrease of A/T)q with in-

creasingP. No realistic value of/D is sufficiently large to
Whend=R., r~R§’3P1’3 is the length of the longest seg- render the flexibility term in Eq(11) negligible. For a rod of
ment of the polymer which can fit into the potential well lengthL/D =50, say, even iP/D>50, a free rod will bend
without being perturbed: the deflection length. Over contouby much more thaf,=0.5D, and so constraining a rod not
lengths less than the deflection length, the polymer configuto bend by more than 005 costs considerable entropy. How-
rations are little affected by the confinement, but on longerever, our theory suggests that for flexible rods, with
length scales the number of configurations of the polymet/P=1, the flexibility term is never dominantA{(T), may
chain are dramatically reduced by the need to remain withirdouble when flexibility is accounted for, but it does not seem
R. of the other polymer. to increase by an order of magnitude.
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There will bec? pair interactionsg? triplet interactions,  with L>P [15]. The difference between the rodlike and the
etc. Not only bound pairs of rods but also bound triplets andlexible polymers is that rodlike polymers cannot form loops,
larger aggregatel20] are possible in a fluid. In particular, i.e., configurations in which the path followed by the poly-
the energy of a triplet is—=3AL, but the entropy cost in mer enters and leaves the potential well of the other polymer
forming a triplet will not be much more than twice that of more than once are highly unfavorable. This is obviously
forming a pair. Thus we expect triplets and larger aggregatesue for perfectly rigid rods which cannot bend at all, but also
to form and the compressibility to diverge at a low®fT  for L<P, once two polymer molecules have parted the en-
than given by Eqs(10) or (11). If the system is allowed to tropy cost in bending them back to join again is much greater
go to equilibrium, then presumably a dense bulk phase wilthan unity.
appear: the aggregates found in H&f. are almost certainly Finally, we consider the relevance of our findings for ex-
not true equilibrium structures. However, within our qualita- periment. First, for long rigid or flexible rods we see a char-
tive theory (A/T), is an adequate estimate of the ratio of theacteristic, dramatic collapse of a dilute phase to a much
Hamaker constant to the temperature at which aggregatiotlenser phase. This is not found for spherical molecules. We
sets in; an estimate of the third virial coefficigf] only  predict that the collapse to either a dense bulk phase or a
changes A/T), by a factor of order unity. Given that in the large aggregate of many molecules side by side, is generic to
aggregates the rods areR-+D apart, if these aggregates rods and should be observable in any dilute solution of very
grow to macroscopic size, as presumably they will, then thdong molecules, in which the attractive interactions are in-
fluid will collapse until the density is high enough that the creased above a threshold. In the case of the DNA studied by
packing fraction is of orderR./D+1)"2. The collapse will Wissenburget al. [2], if we assume a persistence length
be halted by entropic and excluded volume repulsions aP=50 nm[23] for the DNA, thenL/D=P/D=25. With
these densities. The entropic repulsions occur because as tiese values, the contributions of the flexibility and orienta-
volume fraction increases the space available for the rods ttional terms to A/T), are of the same order; we therefore
undulate in decreases. The volume per rod in a aggregate @sinnot treat the DNA as being perfectly rigid. Without the
~(R.+ D)L, which gives the volume fraction inside a ag- numerical coefficients of the terms in Ed.1), and at least a
gregate asR,/D+ 1) 2=0(0.1). This dense phase must be semiquantitative knowledge of the interactions, the theory
at least a highly ordered nematic but it may be a columnahas little predictive ability. However, if experiments such as
phase[21,22. Thus, it is clear that long rods with a attrac- those of Ref[2] could be repeated for sevetalD ratios, the
tion with a range of ordeb do not form a liquid phase, i.e., presence of contributions t4S due to flexibility could be
there is no coexistence between two isotropic phases. determined, and the scaling of the last term of Ej.con-

The large jump in volume fraction froR/L or lessto 0.1  firmed (or refuted.
is a direct consequence of the fact that the polymer mol-
ecules have the lowest free energy in one of two states: free,
in which they behave similarly to a dilute gas of hard rods,
and bound, in which they form a much denser nematic or It is a pleasure to thank B. Mulder and D. Frenkel for
columnar phase. The binding of a pair of polymer moleculesuseful discussions and careful readings of the manuscript. |
is very similar to adsorptiof8,15]. Our free energie&}) and  would like to thank The Royal Society for financial support
(9) are appropriate for adsorption of rigid and flexible rods,and the FOM institute AMOLF for its hospitality. The work
respectively, onto a line. The jump between zero and comef the FOM Institute was part of the research program of
plete adsorption we have found may be contrasted with theOM, and was made possible by financial support from the
continuous adsorption found for flexible polymers, thoseNetherlands Organisation for Scientific ReseadiVO).
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